

Tuning X-ray Structures:

CHEOPS Structure Preparation

"X-ray Structures Suffer from Inaccuracies and Inconsistencies that Need to be Remedied Prior to any Computation"

Geometry: Minimum Requirements

• Appropriate Parameters for Hetero-Groups

- Favourable Energy Contributions
 - valence terms (bonds, angles)
 - van der Waals terms (no close contacts)
 - other non valence terms (no electronic repulsion)
 - \Rightarrow no energetical 'hot spots'
- Optimum Hydrogen Bonding Network
 - ambivalent side chain orientation
 - orientation of flexible hydrogens

Requirements *Have to be Met* Prior to Any Theoretical Study

Hetero-Groups

•Correct for Inadequate Internal Coordinates Example: Nicotinamidemononucleotide

incorrect geometry=wrong center types

corrected center types

- Ensure Appropriate Stereochemistry
- Establish Charge Distribution
- Derive Additional Force Field Parameters (if necessary)

Ionizable Residues

- •Actual Protein Environment Dictates State of Ionization
- Specific Environment Determines Hydrogen Positions

2 HIS cationic due to ASP counterions

HIS neutral due to backbone donor

 \Rightarrow decisions based on estimate of pK_a-values

Adding Hydrogens

•Flexible -OH Need Orientation for Optimum HBO Network

• Donor/Acceptor Properties Switch with Flip of Sidechain

PDB assignment

revised assignment

⇒ explore neighborhood for optimum HBO network

Adding Water

Essential Water Molecules
 Fill Small Holes of the Protein
 (water added to the isolated
 protein finds its x-ray position)

 Final Solvation Fills the Space Starting at Hydrophilic Groups (10000 waters added to protein)

 \Rightarrow essential waters are needed to preserve the overall shape

Energy Calculation

- •Detect Individual 'Hot Spots' by Energy and Gradient
 - van der Waals bumps
 - inadequate internal coordinates (bonds/angles)

• Some Simple Examples:

Structure	Energies [kcal/mol]	RMS(Gradient) [kcal/molÅ]
MET(good)	-20	10
MET(C-S=1.93Å)	-5	50
MET(N-CA-C=118°)	10	150
SER(good)	-20	10
SER(bad OH-HBO)	20	250
1NNC(old)	-13000	50
1NNC(CHEOPS)	-16000	10

 \Rightarrow "small" geometry deviations indicate further (larger) errors!

CHEOPS Structure Preparation

- •Revising Hetero-Groups: center types, force field parameters, charge distribution
- Protonation of Ionizable Residues: depending on the actual surrounding
- Positions of Protons and Hetero-Atoms: optimum hydrogen bonding network
- Water Surrounding: essential water molecules and solvation
- •Valence Optimization: optimization of bond lengths and bond angles

Only Well Prepared Structures are Geometries that can be Analyzed and Studied Further